Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
Hum Mol Genet ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493359

RESUMO

Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.

3.
J Gen Physiol ; 156(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376469

RESUMO

Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.


Assuntos
Imidazóis , Miopatias da Nemalina , Pirazinas , Humanos , Animais , Camundongos , Miopatias da Nemalina/tratamento farmacológico , Miopatias da Nemalina/genética , Tono Muscular , Actinas/genética , Músculo Esquelético , Modelos Animais de Doenças , Troponina
4.
J Neuromuscul Dis ; 10(5): 825-834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458044

RESUMO

BACKGROUND: Respiratory muscle weakness is a common feature in nemaline myopathy. Inspiratory muscle training (IMT) is an intervention that aims to improve inspiratory muscle strength. OBJECTIVE: The aim of this controlled before-and-after pilot study was to investigate if IMT improves respiratory muscle strength in patients with nemaline myopathy. METHODS: Nine patients (7 females; 2 males, age 36.6±20.5 years) with respiratory muscle weakness and different clinical phenotypes and genotypes were included. Patients performed eight weeks of sham IMT followed by eight weeks of active threshold IMT. The patients trained twice a day five days a week for 15 minutes at home. The intensity was constant during the training after a gradual increase to 30% of maximal inspiratory pressure (MIP). RESULTS: Active IMT significantly improved MIP from 43±15.9 to 47±16.6 cmH2O (p = 0.019). The effect size was 1.22. There was no significant effect of sham IMT. Sniff nasal inspiratory pressure, maximal expiratory pressure, spirometry, and diaphragm thickness and thickening showed no significant improvements. CONCLUSIONS: This pilot study shows that threshold IMT is feasible in patients with nemaline myopathy and improves inspiratory muscle strength. Our findings provide valuable preliminary data for the design of a larger, more comprehensive trial.


Assuntos
Exercícios Respiratórios , Miopatias da Nemalina , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Projetos Piloto , Terapia Respiratória , Diafragma , Debilidade Muscular
5.
Am J Physiol Cell Physiol ; 325(1): C60-C68, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212548

RESUMO

Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.


Assuntos
Cálcio , Sarcômeros , Humanos , Sarcômeros/fisiologia , Contração Muscular/fisiologia , Debilidade Muscular , Miosinas/genética , Troponina
7.
Proc Natl Acad Sci U S A ; 120(23): e2221244120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252999

RESUMO

Missense variant Ile79Asn in human cardiac troponin T (cTnT-I79N) has been associated with hypertrophic cardiomyopathy and sudden cardiac arrest in juveniles. cTnT-I79N is located in the cTnT N-terminal (TnT1) loop region and is known for its pathological and prognostic relevance. A recent structural study revealed that I79 is part of a hydrophobic interface between the TnT1 loop and actin, which stabilizes the relaxed (OFF) state of the cardiac thin filament. Given the importance of understanding the role of TnT1 loop region in Ca2+ regulation of the cardiac thin filament along with the underlying mechanisms of cTnT-I79N-linked pathogenesis, we investigated the effects of cTnT-I79N on cardiac myofilament function. Transgenic I79N (Tg-I79N) muscle bundles displayed increased myofilament Ca2+ sensitivity, smaller myofilament lattice spacing, and slower crossbridge kinetics. These findings can be attributed to destabilization of the cardiac thin filament's relaxed state resulting in an increased number of crossbridges during Ca2+ activation. Additionally, in the low Ca2+-relaxed state (pCa8), we showed that more myosin heads are in the disordered-relaxed state (DRX) that are more likely to interact with actin in cTnT-I79N muscle bundles. Dysregulation of the myosin super-relaxed state (SRX) and the SRX/DRX equilibrium in cTnT-I79N muscle bundles likely result in increased mobility of myosin heads at pCa8, enhanced actomyosin interactions as evidenced by increased active force at low Ca2+, and increased sinusoidal stiffness. These findings point to a mechanism whereby cTnT-I79N weakens the interaction of the TnT1 loop with the actin filament, which in turn destabilizes the relaxed state of the cardiac thin filament.


Assuntos
Miofibrilas , Troponina T , Humanos , Miofibrilas/genética , Miofibrilas/patologia , Troponina T/genética , Troponina T/química , Actinas/genética , Mutação , Citoesqueleto de Actina/genética , Miosinas , Cálcio
9.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555335

RESUMO

Diaphragm weakness frequently develops in mechanically ventilated critically ill patients and is associated with increased morbidity, including ventilator weaning failure, mortality, and health care costs. The mechanisms underlying diaphragm weakness are incompletely understood but may include the elastic properties of titin, a giant protein whose layout in the muscle's sarcomeres makes it an ideal candidate to sense ventilation-induced diaphragm unloading, resulting in downstream signaling through titin-binding proteins. In the current study, we investigated whether modulating titin stiffness affects the development of diaphragm weakness during mechanical ventilation. To this end, we ventilated genetically engineered mice with reduced titin stiffness (Rbm20ΔRRM), and robust (TtnΔIAjxn) or severely (TtnΔ112-158) increased titin stiffness for 8 h, and assessed diaphragm contractility and protein expression of titin-binding proteins. Mechanical ventilation reduced the maximum active tension of the diaphragm in WT, TtnΔIAjxn and TtnΔ112-158 mice. However, in Rbm20ΔRRM mice maximum active tension was preserved after ventilation. Analyses of titin binding proteins suggest that muscle ankyrin repeat proteins (MARPs) 1 and 2 may play a role in the adaptation of the diaphragm to mechanical ventilation, and the preservation of diaphragm contractility in Rbm20ΔRRM mice. Thus, Rbm20ΔRRM mice, expressing titin isoforms with lower stiffness, are protected from mechanical ventilation-induced diaphragm weakness, suggesting that titin elasticity may modulate the diaphragm's response to unloading during mechanical ventilation.


Assuntos
Transtornos Respiratórios , Respiração Artificial , Camundongos , Animais , Conectina/metabolismo , Respiração Artificial/efeitos adversos , Diafragma/metabolismo , Debilidade Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA
10.
Hum Mutat ; 43(12): 1860-1865, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335629

RESUMO

KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.


Assuntos
Cardiomiopatias , Proteínas Musculares , Animais , Humanos , Camundongos , Arritmias Cardíacas , Cardiomiopatias/genética , Morte Súbita Cardíaca/etiologia , Desfibriladores Implantáveis , Proteínas Musculares/genética , Volume Sistólico/fisiologia , Função Ventricular Esquerda
11.
Science ; 377(6614): 1533-1537, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173861

RESUMO

Protein synthesis generally starts with a methionine that is removed during translation. However, cytoplasmic actin defies this rule because its synthesis involves noncanonical excision of the acetylated methionine by an unidentified enzyme after translation. Here, we identified C19orf54, named ACTMAP (actin maturation protease), as this enzyme. Its ablation resulted in viable mice in which the cytoskeleton was composed of immature actin molecules across all tissues. However, in skeletal muscle, the lengths of sarcomeric actin filaments were shorter, muscle function was decreased, and centralized nuclei, a common hallmark of myopathies, progressively accumulated. Thus, ACTMAP encodes the missing factor required for the synthesis of mature actin and regulates specific actin-dependent traits in vivo.


Assuntos
Actinas , Metionina , Peptídeo Hidrolases , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/biossíntese , Actinas/genética , Animais , Endopeptidases , Metionina/genética , Metionina/metabolismo , Camundongos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo
12.
Neuromuscul Disord ; 32(8): 654-663, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803773

RESUMO

In this cross-sectional study, we comprehensively assessed respiratory muscle function in various clinical forms of nemaline myopathy (NM) including non-volitional tests for diaphragm function. Forty-two patients with NM were included (10 males (25-74 y/o); 32 females (11-76 y/o)). The NM forms were typical (n=11), mild (n=7), or childhood-onset with slowness of movements (n=24). Forced vital capacity (FVC) and maximal inspiratory pressure were decreased in typical NM in comparison with childhood-onset NM with slowness (32.0 [29.0-58.5] vs 81.0 [75.0-87.0]%, p<0.01, and 35.0 [24.0-55.0] vs 81.0 [65.0-102.5] cmH2O, p<0.01). Eight patients with childhood-onset NM with slowness had respiratory muscle weakness. There was a low correlation between FVC and Motor Function Measure scores (r=0.48, p<0.01). End-inspiratory diaphragm thickness and twitch mouth pressure were decreased in patients requiring home mechanical ventilation compared to non-ventilated patients with normal lung function (1.8 [1.5-2.4] vs 3.1 [2.0-4.6] mm, p=0.049, and -7.9 [-10.9- -4.0] vs -14.9 [-17.3- -12.6], p=0.04). Our results show that respiratory muscle weakness is present in all NM forms, including childhood-onset NM with slowness, and may be present irrespective of the degree of general motor function impairment. These findings highlight the importance for screening of respiratory function in patients with NM to guide respiratory management.


Assuntos
Miopatias da Nemalina , Insuficiência Respiratória , Criança , Estudos Transversais , Diafragma , Feminino , Humanos , Masculino , Debilidade Muscular , Músculos Respiratórios
13.
Muscle Nerve ; 66(2): 197-202, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583147

RESUMO

INTRODUCTION/AIMS: Diaphragm ultrasound is increasingly used in the diagnosis of diaphragm dysfunction and to guide respiratory management in patients with neuromuscular disorders and those who are critically ill. However, the association between diaphragm ultrasound variables and demographic factors like age, sex, and body mass index (BMI) are understudied. Such relationships are important for correct interpretation of normative values and comparison with selected patients groups. The aim of this study was to determine the associations between diaphragm ultrasound variables and subject characteristics. METHODS: B-mode ultrasound was used to image the diaphragm at the zone of apposition in 83 healthy subjects. Diaphragm thickness at resting end-expiration (Tend-exp ), diaphragm thickness at maximal end-inspiration (Tmax-insp ), diaphragm thickening ratio (Tmax-insp /Tend-exp ), and diaphragm echogenicity were measured. Multivariate linear regression was used to explore the associations between diaphragm ultrasound variables and subject characteristics. RESULTS: Tend-exp , Tmax-insp , and thickening ratio do not change with age whereas diaphragm echogenicity increases with age. The thickening ratio had a weak negative association with BMI, while Tend-exp was positively associated with BMI. Men had a larger Tend-exp and Tmax-insp than women (Tend-exp 1.6 ± 0.5 and 1.4 ± 0.3 mm; p = .011, Tmax-insp 3.8 ± 1.0 and 3.2 ± 0.9 mm; p = .004), but similar thickening ratios. DISCUSSION: Diaphragm thickness, thickening, and echogenicity measured with ultrasound are associated with factors such as age, BMI, and sex. Therefore, subject characteristics should be considered when interpreting diaphragm ultrasound measurements. In the absence of normative values, matched control groups are a prerequisite for research and in clinical practice.


Assuntos
Índice de Massa Corporal , Diafragma , Ultrassonografia , Fatores Etários , Diafragma/diagnóstico por imagem , Diafragma/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Respiração , Fatores Sexuais , Ultrassonografia/métodos
14.
Anesthesiology ; 136(5): 749-762, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320344

RESUMO

BACKGROUND: The effect of fluid management strategies in critical illness-associated diaphragm weakness are unknown. This study hypothesized that a liberal fluid strategy induces diaphragm muscle fiber edema, leading to reduction in diaphragmatic force generation in the early phase of experimental pediatric acute respiratory distress syndrome in lambs. METHODS: Nineteen mechanically ventilated female lambs (2 to 6 weeks old) with experimental pediatric acute respiratory distress syndrome were randomized to either a strict restrictive fluid strategy with norepinephrine or a liberal fluid strategy. The fluid strategies were maintained throughout a 6-h period of mechanical ventilation. Transdiaphragmatic pressure was measured under different levels of positive end-expiratory pressure (between 5 and 20 cm H2O). Furthermore, diaphragmatic microcirculation, histology, inflammation, and oxidative stress were studied. RESULTS: Transdiaphragmatic pressures decreased more in the restrictive group (-9.6 cm H2O [95% CI, -14.4 to -4.8]) compared to the liberal group (-0.8 cm H2O [95% CI, -5.8 to 4.3]) during the application of 5 cm H2O positive end-expiratory pressure (P = 0.016) and during the application of 10 cm H2O positive end-expiratory pressure (-10.3 cm H2O [95% CI, -15.2 to -5.4] vs. -2.8 cm H2O [95% CI, -8.0 to 2.3]; P = 0.041). In addition, diaphragmatic microvessel density was decreased in the restrictive group compared to the liberal group (34.0 crossings [25th to 75th percentile, 22.0 to 42.0] vs. 46.0 [25th to 75th percentile, 43.5 to 54.0]; P = 0.015). The application of positive end-expiratory pressure itself decreased the diaphragmatic force generation in a dose-related way; increasing positive end-expiratory pressure from 5 to 20 cm H2O reduced transdiaphragmatic pressures with 27.3% (17.3 cm H2O [95% CI, 14.0 to 20.5] at positive end-expiratory pressure 5 cm H2O vs. 12.6 cm H2O [95% CI, 9.2 to 15.9] at positive end-expiratory pressure 20 cm H2O; P < 0.0001). The diaphragmatic histology, markers for inflammation, and oxidative stress were similar between the groups. CONCLUSIONS: Early fluid restriction decreases the force-generating capacity of the diaphragm and diaphragmatic microcirculation in the acute phase of pediatric acute respiratory distress syndrome. In addition, the application of positive end-expiratory pressure decreases the force-generating capacity of the diaphragm in a dose-related way. These observations provide new insights into the mechanisms of critical illness-associated diaphragm weakness.


Assuntos
Diafragma , Síndrome do Desconforto Respiratório , Animais , Estado Terminal , Feminino , Humanos , Inflamação , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Ovinos
15.
Crit Care Med ; 50(2): 192-203, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35100192

RESUMO

OBJECTIVES: Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation. DESIGN: Randomized clinical trial. SETTING: Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS: Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS: In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS: Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS: Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.


Assuntos
Diafragma/metabolismo , Pulmão/metabolismo , Respiração Artificial/normas , Trabalho Respiratório/fisiologia , Diafragma/fisiopatologia , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/epidemiologia , Insuficiência Respiratória/prevenção & controle , Insuficiência Respiratória/terapia , Trabalho Respiratório/efeitos dos fármacos
16.
J Appl Physiol (1985) ; 132(1): 106-125, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792407

RESUMO

Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.


Assuntos
Insuficiência Cardíaca , Doenças Musculares , Animais , Feminino , Humanos , Peróxido de Hidrogênio , Pós-Menopausa , Qualidade de Vida , Ratos , Ratos Endogâmicos WKY , Volume Sistólico
17.
Biophys Rev ; 13(5): 653-677, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34745373

RESUMO

Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.

18.
J Appl Physiol (1985) ; 131(4): 1328-1339, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473571

RESUMO

Positive end-expiratory pressure (PEEP) is routinely applied in mechanically ventilated patients to improve gas exchange and respiratory mechanics by increasing end-expiratory lung volume (EELV). In a recent experimental study in rats, we demonstrated that prolonged application of PEEP causes diaphragm remodeling, especially longitudinal muscle fiber atrophy. This is of potential clinical importance, as the acute withdrawal of PEEP during ventilator weaning decreases EELV and thereby stretches the adapted, longitudinally atrophied diaphragm fibers to excessive sarcomere lengths, having a detrimental effect on force generation. Whether this series of events occurs in the human diaphragm is unknown. In the current study, we investigated if short-term application of PEEP affects diaphragm geometry and function, which are prerequisites for the development of longitudinal atrophy with prolonged PEEP application. Nineteen healthy volunteers were noninvasively ventilated with PEEP levels of 2, 5, 10, and 15 cmH2O. Magnetic resonance imaging was performed to investigate PEEP-induced changes in diaphragm geometry. Subjects were instrumented with nasogastric catheters to measure diaphragm neuromechanical efficiency (i.e., diaphragm pressure normalized to its electrical activity) during tidal breathing with different PEEP levels. We found that increasing PEEP from 2 to 15 cmH2O resulted in a caudal diaphragm displacement (19 [14-26] mm, P < 0.001), muscle shortening in the zones of apposition (20.6% anterior and 32.7% posterior, P < 0.001), increase in diaphragm thickness (36.4% [0.9%-44.1%], P < 0.001) and reduction in neuromechanical efficiency (48% [37.6%-56.6%], P < 0.001). These findings demonstrate that conditions required to develop longitudinal atrophy in the human diaphragm are present with the application of PEEP.NEW & NOTEWORTHY We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus, prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU).


Assuntos
Diafragma , Respiração Artificial , Animais , Humanos , Medidas de Volume Pulmonar , Respiração com Pressão Positiva , Ratos , Respiração , Respiração Artificial/efeitos adversos
19.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502093

RESUMO

The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.


Assuntos
Miotonia Congênita/metabolismo , Troponina/metabolismo , Animais , Humanos , Contração Muscular , Miotonia Congênita/genética , Miotonia Congênita/fisiopatologia , Sarcômeros/metabolismo , Troponina/química , Troponina/genética
20.
BMJ Open Respir Res ; 8(1)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34544735

RESUMO

INTRODUCTION: The diaphragm is the main muscle of inspiration, and its dysfunction contributes to adverse clinical outcomes in critically ill patients. We recently reported the infiltration of SARS-CoV-2, and the development of fibrosis, in the diaphragm of critically ill patients with COVID-19. In the current study, we aimed to characterise myofiber structure in the diaphragm of critically ill patients with COVID-19. METHODS: Diaphragm muscle specimens were collected during autopsy from patients who died of COVID-19 in three academic medical centres in the Netherlands in April and May 2020 (n=27). We studied diaphragm myofiber gene expression and structure and compared the findings obtained to those of deceased critically ill patients without COVID-19 (n=10). RESULTS: Myofibers of critically ill patients with COVID-19 showed on average larger cross-sectional area (slow-twitch myofibers: 2441±229 vs 1571±309 µm2; fast-twitch myofibers: 1966±209 vs 1225±222 µm2). Four critically ill patients with COVID-19 showed extremely large myofibers, which were splitting and contained many centralised nuclei. RNA-sequencing data revealed differentially expressed genes involved in muscle regeneration. CONCLUSION: Diaphragm of critically ill patients with COVID-19 has distinct myopathic features compared with critically ill patients without COVID-19, which may contribute to the ongoing dyspnoea and fatigue in the patients surviving COVID-19 infection.


Assuntos
COVID-19 , Estado Terminal , Diafragma/patologia , Idoso , Autopsia , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Países Baixos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...